A hybrid COA-DEA method for solving multi-objective problems
نویسندگان
چکیده
The Cuckoo optimization algorithm (COA) is developed for solving single-objective problems and it cannot be used for solving multi-objective problems. So the multi-objective cuckoo optimization algorithm based on data envelopment analysis (DEA) is developed in this paper and it can gain the efficient Pareto frontiers. This algorithm is presented by the CCR model of DEA and the output-oriented approach of it. The selection criterion is higher efficiency for next iteration of the proposed hybrid method. So the profit function of the COA is replaced by the efficiency value that is obtained from DEA. This algorithm is compared with other methods using some test problems. The results shows using COA and DEA approach for solving multi-objective problems increases the speed and the accuracy of the generated solutions.
منابع مشابه
A Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملMeasuring a Dynamic Efficiency Based on MONLP Model under DEA Control
Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. Standard DEA models are quite limited models, in the sense that they do not consider a DMU at different times. To resolve this problem, DEA models with dynamic structures have been proposed.In a recent pape...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملAn algorithm for determining common weights by concept of membership function
Data envelopment analysis (DEA) is a method to evaluate the relative efficiency of decision making units (DMUs). In this method, the issue has always been to determine a set of weights for each DMU which often caused many problems. Since the DEA models also have the multi-objective linear programming (MOLP) problems nature, a rational relationship can be established between MOLP and DEA problem...
متن کاملَA Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times
This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.00595 شماره
صفحات -
تاریخ انتشار 2015